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Outline

• Review last class
– Definitions of Laplace transforms 

– Getting a transform by integration

– Finding transforms (and inverse 
transforms) from tables and theorems

– Applications to differential equations

• Examples of applications to systems of 
homogenous and nonhomogeneous 
equations
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Review Transform Definition
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• Transforms from a function of time, f(t), to 
a function in a complex space, F(s), 
where s is a complex variable

• The transform of a function, is written as 
F(s) = L f(t) where L denotes the Laplace 
transform (use    for L in some equations)

• Laplace transform defined as the 
following integral



L
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Simple Laplace Transforms
f(t) F(s) f(t) F(s)

tn n!/sn+1 eatsint

tx (x+1)/sx+1

eat 1/(s – a) eatcost

sint /(s2 + 2)

cost s/(s2 + 2) Additional transforms 
in  pp 264-267/248-251 
of Kreyszig 9th/10th

edition

sinht /(s2 - 2)

cosht s/(s2 - 2)
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Review Transforms Properties
• L [af1(t) + bf2(t)] = aL [f1(t)] + bL [f2(t)] 

• First shifting theorem
• If L[f(t)] = F(s) then L[eatf(t)] = F(s – a) 

– Example: L[cos(t)] = s/(s2 + 2) so 
L[eatcos(t)] = (s – a)/[(s – a)2 + 2]

• Derivative transforms where L[f(t)] = F(s)
– L[df/dt] = sF(s) – f(0)

– L[d2f/dt2] = s2F(s) – sf(0) – f’(0)

– Similar results for higher derivatives
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Solving Differential Equations
• Transform all terms in the differential 

equation to get an algebraic equation
– For a differential equation in y(t) we get the 

transforms Y(s) = L [y(t)]
– Similar notation for other transformed 

functions in the equation R(s) = L [r(t)]
• Solve the algebraic equation for Y(s)
• Obtain the inverse transform for Y(s) 

from tables to get y(t)
– Manipulations often required to get from 

Y(s) equation to transforms in tables
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Inverse Transformations

• Use transform table
– May need partial fractions approach

• Use first shifting theorem discussed last 
Wednesday

• New methods to be discussed tonight
– Use second shifting theorem

– Second shifting theorem depends on 
definitions of Heavyside unit function and 
Dirac delta function
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Strange Functions

• The Heavyside unit function, u(t – a) is 
defined to be 0 for t < a and 1 for t ≥ a
– Represents step from zero to one at x = a

– Laplace transform is e-as/s

• Delta function, (x – a) is defined such 
that for any vanishingly small , (x – a) 
= 0 except for – < x – a <  and the
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Second Shifting Theorem

• Applies to e-asF(s), where F(s) is known 
transform of a function f(t)

• Inverse transform is f(t – a) u(t – a) 
where u(t – a) is the unit step function

• For e-ass/(s2 + 2), we have e-asF(s) with 
F(s) = s/(s2 + 2) for f(t) = cos t

• Thus e-ass/(s2 + 2) is the Laplace 
transform for cos[(t – a)] u(t – a)
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Review Partial Fractions
• Method to convert fraction with several 

factors in denominator into sum of 
individual factors (in denominator)

• Example is F(s) = 1/(s+a)(s+b)
• Write 1/(s+a)(s+b) = A/(s+a) + B/(s+b)
• Multiply by (s+a)(s+b) and equate 

coefficients of like powers of s
– 1 = A(s + b) + B(s + a)
– A + B = 0 for s1 terms and 1 = bA + aB for 

s0 terms
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Review Partial Fractions II
– A + B = 0 for s1 terms and 1 = bA + aB for 

s0 terms
– Solving for A and B gives A = -B = 1/(b – a)

• Result: 1/(s+a)(s+b) =                        
1/[(b – a)(s + a)] – 1/[(b – a)(s + b)]
– So f(t) = [e-at – e-bt]/(b – a)

• This actually matches a table entry
• Follow same basic process for more 

complex fractions
• Special rules for repeated factors and 

complex factors
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Review Partial Fraction Rules

• Repeated fractions for repeated factors 
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• Complex factors  (s +  – i)(s +  + i)
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Other Applications

• We can apply this to a system of 
equations for yi(t)
– Transform all equations from yi(t) to Yi(s)

– Solve simultaneous algebraic equations for 
each Yi(s)

– Get inverse transforms for yi(t)

– Sometimes simpler to get some yi(t) from 
differential equations after solving one 
equation using transforms
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System of Equations
• Look at system of two equations from 

spring-mass system solved previously
– Have equations for y1(t) and y2(t)
– Write Y1(s) and Y2(s) for L[y1(t)] and L[y2(t)]
– Equations from October 11 lecture
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System of Equations II
• Rearrange to show two simultaneous 

algebraic equations in Y1(s) and Y2(s)
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System of Equations III

• Multiply equation by s2 + (k1 + k2)/m1
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System of Equations IV
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System of Equations V

• The factor for Y2(s) is the same as the 
characteristic equation obtained in 
October 11 lecture
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System of Equations VI

• If all k and all m are the same the 
equation becomes
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System of Equations VII

• The term multiplying Y2(s) can be 
factored as follows
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System of Equations VIII
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• Manipulate right side of Y2(s) equation to 
combine like powers of s
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System of Equations IX

• Use partial fractions for Y2(s); have 
two pure imaginary factors
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System of Equations X
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System of Equations XI

• The Y2(s) equation transforms is the 
sum of transforms for sine and cosine
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System of Equations XII

• Initial conditions from October 11 lecture

• y1(0) = a, y2(0) = –a, y1’(0) = y2’(0) = 0
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System of Equations XIII

• Solution with A = –a, B = C = D = 0 is 
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System of Equations XIV

• Get y1 from original differential equation 
after setting all m and k to be equal 
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• y1 and y2 same as 
in October 11 notes
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Other Applications
• Laplace transforms are used to 

analyze differential equations for 
control systems

• Define system function or transfer 
function as L[input] / L[output] for a 
single input

• Use this function to analyze response 
to various inputs

• Determine stability of control systems: 
will a disturbance damp out?
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Laplace Transform Summary
• Use tables to get transforms from y(t) to 

Y(s) and vice versa
• Differential equation in f(t) and its 

derivatives becomes algebraic equation 
in Y(s)

• Solve for Y(s) and rearrange to get 
terms that you find in transform table

• Use transform table to get y(t) from Y(s)
• Transform method incorporates non-

homogenous terms and initial conditions

Group Exercise

• Form groups of 2-3 people

• Use Laplace transforms to solve the 
differential equation y’’ – 9y = e-t with 
y(0) = 0 and y’(0) = 2

30
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Solution to Group Exercise

• Solve y’’ – 9y = e-t with y(0) = 0 and 
y’(0) = 2 by Laplace transforms

• Transform differential equation:

s2Y(s) – sy(0) – y’(0)  – 9Y(s) = 1/(s +1)

• Substitute initial conditions and solve 
result for Y(s)

s2Y(s) – 0 – 2 – 9Y(s) = 1/(s +1)

(s2 – 9)Y(s) = 2 + 1/(s +1)

31

Solution to Group Exercise II

(s2 – 9)Y(s) = 2 + 1/(s +1)

• Use partial fractions for last term

32

1 ൌ ܣ ݏ ൅ 1 ݏ ൅ 3 ൅ ܤ ݏ ൅ 1 ݏ െ 3 ൅ ܥ ଶݏ െ 9

1
ଶݏ െ 9 ሺݏ ൅ 1ሻ

ൌ
ܣ

ݏ െ 3
൅

ܤ
ሺݏ ൅ 3ሻ

൅
ܥ

ሺݏ ൅ 1ሻ

ܻ ݏ ൌ
2

ଶݏ െ 9
൅

1
ଶݏ െ 9 ሺݏ ൅ 1ሻ

• Set sums of like powers to zero

Solution to Group Exercise III
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1 ൌ ܣ ݏ ൅ 1 ݏ ൅ 3 ൅ ܤ ݏ ൅ 1 ݏ െ 3 ൅ ܥ ଶݏ െ 9
0 ൌ ܣ ൅ ܤ ൅ s2ܥ terms:
0 ൌ ܣ4 െ s1ܤ2 terms:
1 ൌ ܣ3 െ ܤ3 െ s0ܥ9 terms:

• s1 equation gives B = 2A

• Substituting B = 2A into s2 equation 
gives A + 2A + C = 0 or C = –3A 

• Substitute B = 2A and C = –3A into s0

equation to get 1 = 3A – 3(2A) – 9(–3A)

A = 1/24

Solution to Group Exercise IV

• From A = 1/24 and B = 2A: B = 2/24

• From A = 1/24 and C = -3A: C = -3/24
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ܻ ݏ ൌ
2

ଶݏ െ 9
൅

ܣ
ݏ െ 3

൅
ܤ

ሺݏ ൅ 3ሻ
൅

ܥ
ሺݏ ൅ 1ሻ

ܻ ݏ ൌ
2

ଶݏ െ 9
൅
1
24

1
ݏ െ 3

൅
2

ሺݏ ൅ 3ሻ
െ

3
ሺݏ ൅ 1ሻ

• From transform table

ݕ ݐ ൌ
2
3
sinh	ሺ3ݐሻ ൅

1
24

݁ଷ௧ ൅ 2݁ିଷ௧ െ 3݁ି௧

Check Solution for ODE
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• Plug solution into original differential 
equation: y’’ – 9y = e-t

ݕ ݐ ൌ
2
3
sinh	ሺ3ݐሻ ൅

1
24

݁ଷ௧ ൅ 2݁ିଷ௧ െ 3݁ି௧

′ݕ ݐ ൌ 2cosh	ሺ3ݐሻ ൅
1
24

3݁ଷ௧ െ 6݁ିଷ௧ ൅ 3݁ି௧

ᇱᇱݕ ൌ 6sinh	ሺ3ݐሻ ൅
1
24

9݁ଷ௧ ൅ 18݁ିଷ௧ ൅ 3݁ି௧

′′ݕ െ ݕ9 ൌ 6sinh	ሺ3ݐሻ ൅
1
24

9݁ଷ௧ ൅ 18݁ିଷ௧ െ 3݁ି௧

െ9
2
3
sinh ݐ3 ൅

1
24

݁ଷ௧ ൅ 2݁ିଷ௧ െ 3݁ି௧ ൌ ݁ି௧

Check Boundary Conditions
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• Boundary conditions: y(0) = 0; y’(0) = 2 

ݕ ݐ ൌ
2
3
sinh	ሺ3ݐሻ ൅

1
24

݁ଷ௧ ൅ 2݁ିଷ௧ െ 3݁ି௧

′ݕ ݐ ൌ 2cosh	ሺ3ݐሻ ൅
1
24

3݁ଷ௧ െ 6݁ିଷ௧ ൅ 3݁ି௧

ݕ 0 ൌ
2
3
sinh 0 ൅

1
24

݁଴ ൅ 2݁ି଴௧ െ 3݁ି଴

ൌ 0 ൅
1
24

1 ൅ 2 െ 3 ൌ 0

′ݕ ݐ ൌ 2cosh	ሺ0ሻ ൅
1
24

3݁଴ െ 6݁ି଴ ൅ 3݁ି଴

ൌ 2 1 ൅
1
24

3 െ 6 ൅ 3 ൌ 2


