More on Ordinary Differential Equations with Laplace Transforms

Larry Caretto Mechanical Engineering 501A **Seminar in Engineering Analysis**

October 30, 2017

Northridge

Review Transform Definition • Transforms from a function of time, f(t), to a function in a complex space, F(s), where s is a complex variable • The transform of a function, is written as $F(s) = \mathcal{L} f(t)$ where \mathcal{L} denotes the Laplace transform (use $\mathfrak T$ for $\mathfrak L$ in some equations) • Laplace transform defined as the following integral œ $\mathbf{L}[f(t)] = \int e^{-st} f(t) dt = F(s)$ **Northridge** 3

 $\mathbf 0$

Simple Laplace Transforms

Inverse Transformations

- Use transform table – May need partial fractions approach
- Use first shifting theorem discussed last **Wednesday**
- New methods to be discussed tonight
	- Use second shifting theorem
	- Second shifting theorem depends on definitions of Heavyside unit function and Dirac delta function

7

9

Northridge

Second Shifting Theorem

- Applies to $e^{-as}F(s)$, where $F(s)$ is known transform of a function f(t)
- Inverse transform is $f(t a) u(t a)$ where $u(t - a)$ is the unit step function
- For $e^{-as}s/(s^2 + \omega^2)$, we have $e^{-as}F(s)$ with $F(s) = s/(s^2 + \omega^2)$ for $f(t) = \cos \omega t$
- Thus $e^{-as}s/(s^2 + \omega^2)$ is the Laplace transform for $cos[\omega(t - a)]$ u(t – a)

Northridge

System of Equations VI
\n
$$
\int_{s^4 + \frac{k_3 + k_2}{m_2} s^2 + \frac{k_1 + k_2}{m_1} s^2 + \frac{k_3 + k_2}{m_2} \frac{k_1 + k_2}{m_1} - \frac{k_2}{m_2} \frac{k_2}{m_1} \Big| Y_2(s) =
$$
\n
$$
\left(s^2 + \frac{k_1 + k_2}{m_1} \right) (s y_2(0) + y_2'(0)) + \frac{k_2}{m_2} (s y_1(0) + y_1'(0))
$$
\n• If all k and all m are the same the equation becomes\n
$$
\left(s^4 + \frac{4k}{m} s^2 + \frac{3k^2}{m^2} \right) Y_2(s) =
$$
\n
$$
\left(s^2 + \frac{2k}{m} \right) (s y_2(0) + y_2'(0)) + \frac{k}{m} (s y_1(0) + y_1'(0))
$$
\n
$$
\text{Northridge} \qquad \qquad \text{for} \qquad \text{for } s \text{ is the same value.}
$$

System of Equations VII
\n• The term multiplying Y₂(s) can be factored as follows
\n
$$
s^4 + \frac{4k}{m}s^2 + \frac{3k^2}{m^2} = \left(s^2 + \frac{3k}{m}\right)\left(s^2 + \frac{k}{m}\right)
$$
\n• So the Y₂(s) equation becomes
\n
$$
\left(s^2 + \frac{3k}{m}\right)\left(s^2 + \frac{k}{m}\right)Y_2(s) =
$$
\n
$$
\left(s^2 + \frac{2k}{m}\right)(sy_2(0) + y_2'(0)) + \frac{k}{m}(sy_1(0) + y_1'(0))
$$
\nNotbridge

System of Equations X
\n
$$
\alpha s^3 + \beta s^2 + \gamma s + \delta = (As + B) \left(s^2 + \frac{k}{m} \right) + (Cs + D) \left(s^2 + \frac{3k}{m} \right)
$$
\n
$$
= As^3 + A \frac{k}{m} s + Bs^2 + B \frac{k}{m} + Cs^3 + Cs \frac{3k}{m} + Ds^2 + D \frac{3k}{m}
$$
\n
$$
s^3 \quad \alpha = A + C \qquad s^2 \quad \beta = B + D
$$
\n
$$
s^1 \quad \gamma = (A + 3C) \frac{k}{m} \qquad s^0 \quad \delta = (B + 3D) \frac{k}{m}
$$
\n
$$
A = \frac{3\alpha}{2} - \frac{m\gamma}{2k} \qquad B = \frac{3\beta}{2} - \frac{m\delta}{2k} \qquad C = \frac{m\gamma}{2k} - \frac{\alpha}{2} \qquad D = \frac{m\delta}{2k} - \frac{\beta}{2}
$$
\nNorthridge

System of Equations XI
\n• The Y₂(s) equation transforms is the
\nsum of transforms for sine and cosine
\n
$$
Y_2(s) = \frac{as^3 + Bs^2 + ys + \delta}{s^2 + \frac{3k}{m}} = \frac{As + B}{s^2 + \frac{3k}{m}} + \frac{Cs + D}{s^2 + \frac{k}{m}}
$$
\n
$$
F(s) = \frac{As + B}{s^2 + \frac{3k}{m}} \implies f(t) = A\cos\left(t\sqrt{\frac{3k}{m}}\right) + B\sqrt{\frac{m}{3k}}\sin\left(t\sqrt{\frac{3k}{m}}\right)
$$
\n
$$
F(s) = \frac{Cs + D}{s^2 + \frac{k}{m}} \implies f(t) = C\cos\left(t\sqrt{\frac{k}{m}}\right) + D\sqrt{\frac{m}{k}}\sin\left(t\sqrt{\frac{k}{m}}\right)
$$
\n
$$
\text{Northridge}
$$

Group Exercise • Form groups of 2-3 people • Use Laplace transforms to solve the differential equation $y'' - 9y = e^{-t}$ with $y(0) = 0$ and $y'(0) = 2$ 30*<u>California</u> Sate University</u>*

31

Northridge

